ON THE CONSTRUCTION OF PERIODIC SOLUTIONS OF A NONAUTONOMOUS QUASI-LINEAR SYSTEM WITH TWO DEGREES OF FREEDOM

(0 POSTROENII PERIODICHESKIKH RESHENII NEAVTONOMNOI KVAZILINEINOI SISTEMY S DVUMIA STEPENIAMI gVOBODY)

\author{
PMM Vol. 24, No.5, 1960, pp. 933-937
 G.V. PLOTNIKOVA (Moscom)
 ```
(Received 15 June 1960)

```
}
1. Let us consider a nonautonomous oscillatory system, with two degrees of freedom, of the form
\[
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+a x+b y=f(t)+\mu F, \quad \frac{d^{2} y}{d t^{2}}+c x+d y=\varphi(t)+\mu \Phi \tag{1.1}
\end{equation*}
\]

Let us suppose that the functions \(f\) and \(\phi\) are continuous periodic functions of time \(t\) of period \(2 \pi\). The functions \(F\) and \(\Phi\) are assumed to be analytic in the variables \(x, x^{\prime}, y, y^{\prime} ; \mu\), and continuous periodic functions of time \(t\) with the same period \(2 \pi\). The coefficients \(a, b, c\) and \(d\) are constants. The quantity \(\mu\) is a small parameter. In the case of resonance, the fundamental equation
\[
\left|\begin{array}{cc}
D^{2}+a & b \\
c & D^{2}+d
\end{array}\right|=0
\]
will have either a zero root or roots of the form \(\pm p i\) where \(p\) is an integer. Another instance, which will also be referred to as a resonance case, occurs when the fundamental equation has roots which differ from the indicated critical values by a quantity which is an infinitesimal of the order of \(\mu\). This case can be reduced, however, to the former one by the introduction of correcting terms into the functions \(\mu F\) and \(\mu \Phi\).

Furthermore, we shall assume that the coefficients of the \(p\) th harmonic in the Fourier expansions of the functions \(f(t)\) and \(\phi(t)\) are either absent or are infinitesimals of the order of \(\mu\). The generating system ( \(\mu=0\) )
\[
\begin{equation*}
\frac{d^{2} x}{\overline{d t^{2}}}+a x+b y=f(t), \quad \frac{d^{2} y}{d t^{2}}+c x+d y=\varphi(t) \tag{1.2}
\end{equation*}
\]
can have the following families of periodic solutions:
a) If the fundamental equation has four roots \(\pm i k, \pm i n\), where \(k\) and \(m\) are integers and \(k \neq m\), then
\[
\begin{equation*}
x_{0}(t)=x_{0}{ }^{(k)}(t)+x_{0}^{(m)}(t)+f^{\circ}(t), \quad y_{0}(t)=p_{k} x_{0}{ }^{(k)}(t)+p_{m} x_{0}{ }^{(m)}(t)+\varphi^{\circ}(t) \tag{1.3}
\end{equation*}
\]

Here, \(f^{\circ}(t)\) and \(\phi^{\circ}(t)\) are the particular periodic solutions of (1.2) given by
\[
\begin{gathered}
x_{0}^{(k)}(t)=A_{0} \cos k t+\frac{B_{0}}{k} \sin k t, p_{k}=\frac{c}{k^{2}-d}=\frac{k^{2}-a}{b} \\
x_{0}^{(m)}(t)=E_{0} \cos m t+\frac{D_{0}}{m} \sin m t, p_{m}=\frac{c}{m^{2}-d}=\frac{m^{2}-a}{b}
\end{gathered}
\]

Where \(A_{0}, B_{0}, E_{0}\) and \(D_{0}\) are arbitrary constants.
b) If the fundamental equation has only two roots \(\pm i k\), where \(k\) is an integer, then
\[
\begin{equation*}
x_{0}(t)=x_{0}{ }^{(k)}(t)+f^{\circ}(t), \quad y_{0}(t)=p_{k} x_{0}{ }^{(k)}(t)+\varphi^{\circ}(t) \tag{1.4}
\end{equation*}
\]
c) If the fundamental equation has multiple roots \(k=m\), then
\[
\begin{equation*}
x_{0}(t)=A_{0} \cos k t+\frac{B_{0}}{k} \sin k t+f^{\circ}(t), \quad y_{0}(t)=E_{0} \cos k t+\frac{D_{0}}{k} \sin k t+\varphi^{\circ}(t) \tag{1.5}
\end{equation*}
\]

The case of zero roots is not considered in this work.
We shall look for periodic solutions of the fundamental system (1.1) by the method of a small parameter. Let us consider the case (a). The initial conditions are taken as
\[
\begin{align*}
x(0) & =f^{\circ}(0)+A_{0}+E_{0}+\beta_{1}+\beta_{3} \\
x^{\prime}(0) & =f^{\circ}(0)+B_{0}+D_{0}+\beta_{2}+\beta_{4} \\
y(0) & =\varphi^{\circ}(0)+p_{k} A_{0}+p_{m} E_{0}+p_{k} \beta_{1}+p_{m} \beta_{:}  \tag{1.6}\\
y^{\prime}(0) & =\varphi^{\circ}(0)+p_{k} B_{0}+p_{m} D_{0}+p_{k} \beta_{2}+p_{m} \beta_{4}
\end{align*}
\]
where the quantities \(\beta_{i}\) are functions of \(\mu\) which vanish when \(\mu=0\). In this case the solution of the system (1.1) has the form
\[
x=x\left(t, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right), \quad y=y\left(t, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right.
\]

We shall determine the structure of these functions. Let us suppose that they can be expanded into series of integer powers of the parameters \(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\) and \(\mu\). Let us find those terms of these series which depend on \(\beta_{1}, \beta_{2}, \beta_{3}\) and \(\beta_{4}\) but not on \(\mu\). It is easily seen that all these terms, with the exception of those that are linear in \(\beta_{1}, \beta_{2}, \beta_{3}\) and \(\beta_{4}\), vanish because their coefficients satisfy a system of homogeneous differential equations with zero initial conditions. The coefficients of the linear terms, obviously, have a form analogous to that part of the
generating solntion which corresponds to the periodic solution of the homogeneous equations corresponding to (1.2); one needs only to replace \(A_{0}, B_{0}, E_{0}\) and \(D_{0}\) by \(\beta_{1}, \beta_{2}, \beta_{3}\) and \(\beta_{4}\), respectively, in accordance with the form of the initial conditions (1.6).

Thus, the solution of Equation (1.1) can be given in the form [1]
\[
\begin{align*}
& x(t)=f^{\circ}(t)+\left(A_{0}+\beta_{1}\right) \cos k t+\frac{B_{0}+\beta_{2}}{k} \sin k t+\left(E_{0}+\beta_{3}\right) \cos m t+\frac{D_{0}+\beta_{4}}{m} \sin m t+  \tag{1.7}\\
& +\sum_{n=1}^{\infty}\left[C_{n}+\frac{\partial C_{n}}{\partial \beta_{1}} \beta_{1}+\frac{\partial C_{n}}{\partial \beta_{2}} \beta_{2}+\frac{\partial C_{n}}{\partial \beta_{3}} \beta_{3}+\frac{\partial C_{n}}{\partial \beta_{4}} \beta_{4}+\ldots\right] \mu^{n} \\
& y(t)=\varphi^{\circ}(t)+p_{k}\left[\left(A_{0}+\beta_{1}\right) \cos k t+\frac{B_{0}+\beta_{2}}{k} \sin k t\right]+p_{m}\left[\left(E_{0}+\beta_{3}\right) \cos m t+\right. \\
& \left.\quad+\frac{D_{0}+\beta_{4}}{m} \sin m t\right]+\sum_{n=1}^{\infty}\left[H_{n}+\frac{\partial H_{n}}{\partial \beta_{1}} \beta_{1}+\frac{\partial H_{n}}{\partial \beta_{2}} \beta_{2}+\frac{\partial H_{n}}{\partial \beta_{3}} \beta_{3}+\frac{\partial H_{n}}{\partial \beta_{4}} \beta_{4}+\ldots\right] \mu^{n}
\end{align*}
\]

All the \(C_{n}, H_{n}\) and their derivatives with respect to \(\beta_{i}\) are taken with \(\beta_{1}=\ldots=\beta_{4}=\mu=0\). The coefficients \(C_{n}\) and \(H_{n}\) satisfy the system
\[
\begin{equation*}
C_{n}^{\prime \prime}+a C_{n}+b H_{n}=F_{n}, \quad H_{n}^{\prime \prime}+c C_{n}+d H_{n}=\Phi_{n} \tag{1.8}
\end{equation*}
\]
with the initial conditions \(C_{n}(0)=H_{n}(0)=C_{n}{ }^{\prime}(0)=H_{n}{ }^{\prime}(0)=0\). Here
\[
F_{n}(t)=\frac{1}{(n-1)!}\left(\frac{d^{n-1} F}{d \mu^{n-1}}\right)_{\beta_{i}=\mu=0}, \quad \Phi_{n}=\frac{1}{(n-1)!}\left(\frac{d^{n-1} \Phi}{d \mu^{n-1}}\right)_{\beta_{i}=\mu=0}
\]

The quantities \(d^{n-1} F / d^{n-1}\) and \(d^{n-1} \phi / d^{n-1}\) are total derivatives of the functions \(F\left(t, x, x^{\prime}, y, y^{\prime}, \mu\right)\) and \(\phi\left(t, x, x^{\prime} ; y, y^{\prime} ; \mu\right)\) with respect to \(\mu\). We present the first three functions \(F_{n}\) in explicit forms
\[
\begin{gathered}
F_{1}(t)=F\left(t, x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}, 0\right) \\
F_{2}(t)=\left(\frac{\partial F}{\partial x}\right)_{0} C_{1}+\left(\frac{\partial F}{\partial x^{\prime}}\right)_{0} C_{1}^{\prime}+\left(\frac{\partial F}{\partial y}\right)_{0} H_{1}+\left(\frac{\partial F}{\partial y^{\prime}}\right)_{0} H_{1}^{\prime}+\left(\frac{\partial F}{\partial \mu}\right)_{0} \\
F_{3}(t)-\frac{1}{2}\left(\frac{\partial^{2} F}{\partial x^{2}}\right)_{0} C_{1}^{2}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial x^{\prime 2}}\right)_{0} C_{1}^{\prime 2}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial y^{2}}\right)_{0} H_{1}^{2}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial y^{\prime 2}}\right)_{0} H_{1}^{\prime 2}+\frac{1}{2}\left(\frac{\partial^{2} F}{\partial \mu^{2}}\right)_{0}+ \\
+\left(\frac{\partial^{2} F}{\partial x \partial y}\right)_{0} C_{1} H_{1}+\left(\frac{\partial^{2} F}{\partial x \partial x^{\prime}}\right)_{0} C_{1} C_{1}^{\prime}+\left(\frac{\partial^{2} F}{\partial x \partial y^{\prime}}\right)_{0} C_{1} H_{1}^{\prime}+\left(\frac{\partial^{2} F}{\partial x^{1} \partial y}\right)_{0} C_{1}^{\prime} H_{1}+ \\
+\left(\frac{\partial^{2} F}{\partial x^{1} \partial y^{1}}\right)_{0} C_{1}^{\prime} H_{1}^{\prime}+\left(\frac{\partial^{2} F}{\partial y \partial y^{\prime}}\right)_{0} H_{1} H_{1}^{\prime}+\left(\frac{\partial^{2} F}{\partial x^{\prime} \partial \mu}\right)_{0} C_{1}^{\prime}+\left(\frac{\partial^{2} F}{\partial y \partial \mu}\right)_{0} H_{1}+\left(\frac{\partial^{2} F}{\partial x \partial \mu}\right)_{0} C_{1}+ \\
+\left(\frac{\partial^{2} F}{\partial y^{\prime} \partial \mu}\right) H_{1^{\prime}}+\left(\frac{\partial F}{\partial x}\right)_{0} C_{2}+\left(\frac{\partial F}{\partial x^{\prime}}\right)_{0} C_{2}^{\prime}+\left(\frac{\partial F}{\partial y}\right)_{0} H_{2}+\left(\frac{\partial F}{\partial y^{\prime}}\right)_{0} H_{2}^{\prime}
\end{gathered}
\]

Analogous formulas exist for \(\phi_{n^{\prime}}\). The subscript 0 at the parentheses indicates that the \(x, x^{\prime}, y, y^{\prime}\) and \(\mu\) are replaced by \(x_{0}, x_{0}^{\prime}, y_{0}, y_{0}^{\prime}\) and 0 in the derivatives.

Having solved the system (1.8) and taking into account the relations
\[
-\frac{c}{k}=p_{k} \frac{d-k^{2}}{k},-\frac{b}{k} \quad p_{k}=\frac{a-k^{2}}{k},-\frac{c}{m}=p_{m} \frac{d-m^{2}}{m}, \quad-\frac{b}{m} p_{m}=\frac{a-m^{2}}{m}
\]
one can express the functions \(C_{n}(t)\) and \(H_{n}(t)\) in the form
\[
C_{n}(t)=C_{n}^{(k)}(t)+C_{n}^{(m)}(t), \quad H_{n}(t)=p_{k} C_{n}^{(k)}(t)+p_{m} C_{n}^{(m)}(t)
\]
where
\[
\begin{aligned}
C_{n}{ }^{(k)}(t) & =\frac{1}{m^{2}-k^{2}}\left[\frac{d-k^{2}}{k} \int_{0}^{t} F_{n}(\tau) \sin k(t-\tau) d \tau-\frac{b}{k} \int_{0}^{t} \Phi_{n}(\tau) \sin k(t-\tau) d \tau\right] \\
C_{n}{ }^{(m)}(t) & =\frac{1}{m^{2}-k^{2}}\left[\frac{d-m^{2}}{m} \int_{0}^{t} F_{n}(\tau) \sin m(t-\tau) d \tau-\frac{b}{m} \int_{0}^{t} \Phi_{n}(\tau) \sin m(t-\tau) d \tau\right]
\end{aligned}
\]

It is easy to show that the particular periodic solutions \(f^{\circ}(t)\) and \(\phi^{\circ}(t)\) can be represented as the sum of two terms \(f_{k}(t)\) and \(f_{m}(t)\) so that
\[
f^{\circ}(t)=f_{k}(t)+f_{m}(t), \quad \varphi^{\circ}(k)=p_{k} f_{k}(t)+p_{m} f_{m}(t)
\]

In the case of nonautonomous systems, as well as in the case of autonomous ones, one can show that differentiation of \(C_{n}{ }^{(k)}\) and \(C_{n}{ }^{(m)}\) with respect to \(\beta_{1}, \beta_{2}, \beta_{3}\) and \(\beta_{4}\) is replaced by differentiation with respect to \(A_{0}, B_{0}, E_{0}\) and \(D_{0}\), respectively.

The final solution \(x\left(t, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)\) and \(y\left(t, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)\) of the system (1.1) is expressed in the form
\[
\begin{gather*}
x(t)=x_{k}(t)+x_{m}(t)+f_{k}(t)+f_{m}(t) \\
y(t)=p_{k}\left[x_{k}(t)+f_{k}(t)\right]+p_{m}\left[x_{m}(t)+f_{m}(t)\right] \tag{1.9}
\end{gather*}
\]
where
\[
\begin{align*}
x_{k}(t) & =\left(A_{0}+\beta_{1}\right) \cos k t+\frac{B_{0}+\beta_{2}}{k} \sin k t+\sum_{n=1}^{\infty}\left[C_{n}{ }^{(k)}+\frac{\partial C_{n}^{(k)}}{\partial A_{0}} \beta_{1}+\right. \\
& \left.+\frac{\partial C_{n}{ }^{(k)}}{\partial \bar{B}_{0}} \beta_{2}+\frac{\partial C_{n}^{(k)}}{\partial E_{0}} \beta_{3}+\frac{\partial C_{n}^{(k)}}{\partial D_{0}} \beta_{4}+\frac{1}{2} \frac{\partial^{2} C_{n}^{(k)}}{\partial A_{0}^{2}} \beta_{1}{ }^{2}+\ldots\right] \mu^{n} \\
x_{m}(t) & =\left(E_{0}+\beta_{3}\right) \cos m t+\frac{D_{0}+\beta_{4}}{m} \sin m t+  \tag{1.10}\\
& +\sum_{n=1}^{\infty}\left[C_{n}^{(m)}+\frac{\partial C_{n}^{(m)}}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}^{(m)}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}
\end{align*}
\]

Hence, for the construction of periodic solutions of a nonatonomous quasi-linear system with two degrees of freedom it is sufficient to construct the functions \(x_{k}, x_{m}, f_{k}\) and \(f_{m}\) which enter into the \(x\)-coordinate.

The variable \(y\) is constructed by multiplying \(x_{k}, x_{m}, f_{k}\) and \(f_{m}\) by constants and adding the result, just as in the linear system.

In case (b), Formulas (1,9) take on the form
\[
x(t)=x_{k}(t)+f_{k}(t), \quad y(t)=p_{k}\left[x_{k}(t)+f_{k}(t)\right]
\]

In case (c), Equations (1.2) can be factored and the solution can be written in the form
\[
\begin{gathered}
x(t)=\left(A_{0}+\beta_{1}\right) \cos k t+\frac{B_{0}+\beta_{2}}{k} \sin k t+ \\
+\sum_{n=1}^{\infty}\left[C_{n}+\frac{\partial C_{n}}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}+f^{\circ}(t) \\
y(t)=\left(E_{0}+\beta_{3}\right) \cos k t+\frac{D_{0}+\beta_{4}}{k} \sin k t+ \\
+\sum_{n=1}^{\infty}\left[H_{n}+\frac{\partial H_{n}}{\partial A_{0}} \beta_{1}+\frac{\partial I_{n}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}+\varphi^{\circ}(t)
\end{gathered}
\]

Here, the coordinates \(x\) and \(y\) are not interconnected (which is also the case in linear systems).

For the construction of these solutions one has to know how to compute the coefficients \(C_{n}{ }^{(k)}(t)\) and \(C_{n}{ }^{(m)}(t)\) of \(\mu^{n}\). The remaining coefficients of the series (1.10) are found by successive differentiations of \(c_{n}{ }^{(k)}\) and \(C_{n}{ }^{(n)}\) with respect to \(A_{0}, B_{0}, E_{0}\) and \(D_{0}\).
2. Taking into account the conditions (1.6) we can write down the conditions for the periodic functions in the following form:
\[
\begin{gather*}
x\left(2 \pi, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)=f^{(0)}(0)+A_{0}+\beta_{1}+E_{0}+\beta_{3} \\
x^{\prime}\left(2 \pi, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)=f^{(0)^{\prime}}(0)+B_{0}+\beta_{2}+D_{0}+\beta_{4}  \tag{2.1}\\
y\left(2 \pi, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{1}, \mu\right)=\varphi^{(0)}(0)+\left(A_{0}+\beta_{1}\right) p_{k}+\left(E_{0}+\beta_{3}\right) p_{m} \\
y^{\prime}\left(2 \pi, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \mu\right)=\varphi^{(0)^{\prime}}(0)+\left(B_{0}+\beta_{2}\right) p_{k}+\left(D_{0}+\beta_{4}\right) p_{m}
\end{gather*}
\]

Substituting into the left-hand sides of these equations the expressions for \(x, x^{\prime}, y\) and \(y^{\prime}\) from (1.10), we obtain
\[
\begin{align*}
& \sum_{n=1}^{\infty}\left[C_{n}{ }^{(k)}(2 \pi)+\frac{\partial C_{n}{ }^{(k)}}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}{ }^{(k)}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}+ \\
+ & \sum_{n=1}^{\infty}\left[C_{n}{ }^{(m)}(2 \pi)+\frac{\partial C_{n}{ }^{(m)}}{\partial A_{0}} \beta_{1}+\frac{\partial C_{n}{ }^{(m)}}{\partial B_{0}} \beta_{2}+\ldots\right] \mu^{n}=0 \tag{2.2}
\end{align*}
\]
\[
\begin{aligned}
& p_{k} \sum_{n=1}^{\infty}\left[C_{n}{ }^{(k)}(2 \pi)+\frac{\partial C_{n}{ }^{(k)}}{\partial A_{0}} \beta_{1}+\ldots\right] \mu^{n}+ \\
& +p_{m} \sum_{n=1}^{\infty}\left[C_{n}{ }^{(m)}(2 \pi)+\frac{\partial C_{n}{ }^{(m)}}{\partial A_{0}}+\ldots\right] \mu^{n}=0
\end{aligned}
\]
and two more formulas in which \(C_{n}{ }^{(k)}\) and \(C_{n}{ }^{(m)}\) are replaced by \(C_{n}{ }^{(k)^{\prime}}\) and \(C_{n}{ }^{(m)^{\prime}}\). The functions \(C_{n}^{(k)}, C_{n}{ }^{(k)^{\prime}}, C_{n}(m), C_{n}^{(m)^{\prime}}\) and their derivatives with respect to \(A_{0}, B_{0}, E_{0}\) and \(D_{0}\) are here evaluated at the point \(t=2 \pi, \beta_{i}=\mu=0\). Since \(p_{k}-p_{m} \neq 0\), we have in place of (2.2) the next set of equations:
\[
\begin{align*}
& \sum_{n=1}^{\infty}\left[C_{n}{ }^{(k)}(2 \pi)+\frac{\partial C_{n}{ }^{(k)}}{\partial A_{0}} \beta_{1}+\ldots\right] \mu^{n}=0, \\
& \sum_{n=1}^{\infty}\left[C_{n}{ }^{(k)^{\prime}}(2 \pi)+\frac{\partial C_{n}{ }^{(k)^{\prime}}}{\partial A_{0}} \beta_{1}+\ldots\right] \mu^{n}=0  \tag{2.3}\\
& \sum_{n=1}^{\infty}\left[C_{n}{ }^{(m)}(2 \pi)+\frac{\partial C_{n}{ }^{(m)}}{\partial A_{0}} \beta_{1}+\ldots\right] \mu^{n}=0 \\
& \sum_{n=1}^{\infty}\left[C_{n}{ }^{(m)^{\prime}}(2 \pi)+\frac{\partial C_{n}^{(\dot{m})^{\prime}}}{\partial A_{v}} \beta_{1}+\ldots\right] \mu^{n}=0
\end{align*}
\]

Let us assume that \(\beta_{1}, \beta_{2}, \beta_{3}\) and \(\beta_{4}\) can be expanded into series of the form
\[
\begin{equation*}
\beta_{1}=\sum_{n=1}^{\infty} A_{n} \mu^{n}, \quad \beta_{2}=\sum_{n=1}^{\infty} B_{n} \mu^{n}, \quad \beta_{3}=\sum_{n=1}^{\infty} E_{n} \mu^{n}, \quad \beta_{4}=\sum_{n=1}^{\infty} D_{n} \mu^{n} \tag{2.4}
\end{equation*}
\]

Let us substitute \(\beta_{i}\) into the left-hand sides of Equations (2.3), and equate to zero the coefficients of the series. The terms which are independent of \(\mu\) yield the results:
\[
\begin{equation*}
C_{1}{ }^{(k)}(2 \pi)=0, \quad C_{1}{ }^{(m)}(2 \pi)=0, \quad C_{1}{ }^{(k)^{\prime}}(2 \pi)=0, \quad C_{1}{ }^{(m)^{\prime}}(2 \pi)=0 \tag{2.5}
\end{equation*}
\]

The coefficients of the first power of \(\mu\) lead to the equations
\[
\begin{aligned}
& C_{2}^{(k)}(2 \pi)+\frac{\partial C_{1}{ }^{(k)}}{\partial A_{0}} A_{1}+\frac{\partial C_{1}{ }^{(k)}}{\partial B_{0}} B_{1}+\frac{\partial C_{1}{ }^{(k)}}{\partial E_{0}} E_{1}+\frac{\partial C_{1}{ }^{(k)}}{\partial D_{0}} D_{1}=0 \\
& C_{2}^{(m)}(2 \pi)+\frac{\partial C_{1}{ }^{(m)}}{\partial A_{0}} A_{1}+\frac{\partial C_{1}{ }^{(m)}}{\partial B_{0}} B_{1}+\frac{\partial C_{1}{ }^{(m)}}{\partial E_{0}} E_{1}+\frac{\partial C_{1}^{(m)}}{\partial D_{0}} D_{1}=0
\end{aligned}
\]
\[
\begin{align*}
& C_{2}^{(k)^{\prime}}(2 \pi)+\frac{\left.\partial C_{1}{ }^{(k)}\right)^{\prime}}{\partial A_{0}} A_{1}+\frac{\partial C_{1}{ }^{(k)^{\prime}}}{\partial B_{0}} B_{1}+\frac{\partial C_{1}{ }^{(k)^{\prime}}}{\partial E_{0}} E_{1}+\frac{\partial C_{1}{ }^{(k)^{\prime}}}{\partial D_{0}} D_{1}=0  \tag{2.6}\\
& C_{2}^{(m)^{\prime}}(2 \pi)+\frac{\partial C_{1}{ }^{(m)^{\prime}}}{\partial A_{0}} A_{1}+\frac{\partial C_{1}^{(m)^{\prime}}}{\partial B_{0}} B_{1}+\frac{\partial C_{1}(m)^{\prime}}{\partial E_{0}} E_{1}+\frac{\partial C_{1}{ }^{(m))^{\prime}}}{\partial D_{0}} D_{1}=0
\end{align*}
\]

The coefficients of the second-degree terms in \(\mu\) yield
\[
\begin{gather*}
C_{3}{ }^{(k)}(2 \pi)+\frac{\partial C_{2}{ }^{(k)}}{\partial A_{0}} A_{1}+\frac{\partial C_{2}{ }^{(k)}}{\partial B_{0}} B_{1}+\frac{\partial C_{2}^{(k)}}{\partial E_{0}} E_{1}+\frac{\partial C_{2}{ }^{(k)}}{\partial D_{0}} D_{1}+ \\
+\frac{\partial C_{1}{ }^{(k)}}{\partial A_{0}} A_{2}+\frac{\partial C_{1}{ }^{(k)}}{\partial B_{0}} B_{2}+\frac{\partial C_{1}{ }^{(k)}}{\partial E_{0}} E_{2}+\frac{\partial C_{1}{ }^{(k)}}{\partial D_{0}} D_{2}+\frac{1}{2} \frac{\partial^{2} C_{1}{ }^{(k)}}{\partial A_{0}{ }^{2}} A_{1}{ }^{\text {2 }}+\frac{1}{2} \frac{\partial^{2} C_{1}^{(k)}}{\partial B_{0}{ }^{2}} B_{1}{ }^{2}+ \\
+ \\
+\frac{1}{2} \frac{\partial^{2} C_{1}(k)}{\partial E_{0}{ }^{2}} E_{1}{ }^{2}+\frac{1}{2} \frac{\partial^{2} C_{1}{ }^{(k)}}{\partial D_{0}{ }^{2}} D_{1}{ }^{2}+\frac{\partial^{2} C_{1}(k)}{\partial A_{0} \partial B_{1}} A_{1} B_{1}+\frac{\partial^{2} C_{1}{ }^{(k)}}{\partial A_{0} \partial E_{0}} A_{1} E_{1}+  \tag{2.7}\\
+ \\
\frac{\partial^{2} C_{1}{ }^{(k)}}{\partial A_{0} \partial D_{0}} A_{1} D_{1}+\frac{\partial^{2} C_{1}{ }^{(k)}}{\partial B_{0} \partial E_{0}} B_{1} E_{1}+\frac{\partial^{2} C_{1}{ }^{k}}{\partial B_{0} \partial D_{0}} B_{1} D_{1}+\frac{\partial^{2} C_{1}(k)}{\partial E_{0} \partial D_{0}} E_{1} D_{1}=0
\end{gather*}
\]
and three more equations in which the \(C_{i}{ }^{(k)}\) are successively replaced by \(C_{i}^{(k)}, C_{i}^{(k)^{\prime}}\) and \(C_{i}^{(m)^{\prime}}\). The system of equations (2.5) determines the constants \(A_{0}, B_{0}, B_{0}\) and \(D_{0}\) when these equations have simple roots, i.e. when the Jacobian
\[
\begin{equation*}
\Delta_{\mathbf{1}}=\frac{\partial\left(C_{\mathbf{1}}^{(k)}, C_{\mathbf{1}}^{(m)}, C_{\mathbf{1}}^{(k)^{\prime}}, C_{\mathbf{1}}^{(m)^{\prime}}\right)}{\partial\left(A_{0}, B_{0}, E_{0}, D_{0}\right)} \neq 0 \tag{2.8}
\end{equation*}
\]

In this case we determine \(A_{1}, B_{1}, E_{1}\) and \(D_{1}\) by means of the linear system (2.6), and we find \(A_{2}, B_{2}, E_{2}\) and \(C_{2}\) from (2.7), and so on. All these equations are linear in \(A_{n}, B_{n}, E_{n}\) and \(D_{n}\), and all have the same determinant \(\Delta_{1}\).

In case of repeated roots of the system of equations (2.5), the determinant \(\Delta_{1}=0\). If there is to be a periodic solution with finite amplitude of the system (1.1), it is necessary that an auxiliary condition be satisfied: the rank of the fundamental matrix of the linear system (2.6) and that of the augmented matrix (obtained by attaching a column of the free terms) must be the same. If this condition is satisfied then there can occur a bifurcation of the solution of the generating equations. If this condition is not satisfied, then the system of equations (2.6) can lead to infinite values for the coefficients \(A_{1}, B_{1}, E_{1}\) and \(D_{1}\). In this case the periodic solution of Equation (1.1) cannot be found by this method.

In all those cases when there exists a periodic solution of the system (1.1), this solution can be represented in the form of a power series in \(\mu\) :
\[
\begin{equation*}
x(t)=x_{0}(t)+\mu x_{1}(t)+\mu^{2} x_{2}(t)+\ldots, y(t)=y_{0}(t)+\mu y_{1}(t)+\mu^{2} y_{2}(t)+\ldots \tag{2.9}
\end{equation*}
\]

The generating solution is given by (1.3) or by (1.4) and (1.5). Here
\[
\begin{aligned}
& r_{1}(t)=A_{1} \cos k t+\frac{B_{1}}{k} \sin k t+E_{1} \cos m t+\frac{D_{1}}{m} \sin m t+C_{1}{ }^{(k)}(t)+C_{1}{ }^{(m)}(t) \\
& x_{2}(t)=A_{2} \cos k t+\frac{B_{2}}{k} \sin k t+E_{2} \cos m t+\frac{D_{2}}{m} \sin m t+ \\
& +A_{1}\left[\frac{\partial C_{\mathbf{1}}{ }^{(k)}}{\partial A_{0}}+\frac{\partial C_{\mathbf{1}}{ }^{(m)}}{\partial A_{0}}\right]+B_{1}\left[\frac{\partial C_{1}{ }^{(k)}}{\partial B_{0}}+\frac{\partial C_{1}{ }^{(m)}}{\partial B_{0}}\right]+ \\
& +E_{1}\left[\frac{\partial C_{1}{ }^{(k)}}{\partial E_{0}}+\frac{\partial C_{1}{ }^{(m)}}{\partial E_{0}}\right]+D_{1}\left[\frac{\partial C_{1}{ }^{(k)}}{\partial D_{0}}+\frac{\partial C_{1}{ }^{(m)}}{\partial D_{0}}\right]+C_{2}{ }^{(k)}(t)+{C_{2}}^{(m)}(t) \\
& y_{1}(t)=p_{k}\left[A_{1} \cos l t+\frac{B_{1}}{k} \sin k t\right] \div p_{m}\left[E_{1} \cos m t+\frac{D_{1}}{m} \sin m t\right]+ \\
& +p_{k} C_{1}{ }^{(k)}(t)+p_{m} C_{1}^{(m)}(t) \\
& y_{2}(t)=p_{k}\left[A_{2} \cos k t+\frac{B_{2}}{k} \sin k t\right] \div p_{m}\left[E_{2} \cos m t+\frac{D_{2}}{m} \sin m t\right]+p_{k} C_{2}^{(k)}(t)+ \\
& +A_{1}\left[p_{k} \frac{\partial C_{1}{ }^{(k)}}{\partial A_{0}}+p_{m} \frac{\partial C_{1}^{(m)}}{\partial A_{0}}\right]+B_{1}\left[p_{k} \frac{\partial C_{1}^{(k)}}{\partial B_{0}}+p_{m} \frac{\partial C_{1}^{(m)}}{\partial B_{0}}\right]+p_{m} C_{2}^{(m)}(t)+ \\
& \div E_{1}\left[p_{k} \frac{\partial C_{1}^{(k)}}{\partial E_{0}}+p_{m} \frac{\partial C_{1}^{(m)}}{\partial E_{0}}\right]+D_{\mathbf{1}}\left[p_{k} \frac{\partial C_{1}^{(l)}}{\partial D_{0}}+p_{m} \frac{\partial C_{1}^{m}}{\partial D_{0}}\right] \text { etc. }
\end{aligned}
\]

We have analysed above the case (a). For the cases (b) and (c) one obtains different forms. These results can be extended to systems with \(n\) degrees of freedom.

\section*{BIBLIOGRAPHY}
1. Proskuriakov, A.P., Kolebaniia kvazilineinykh neavtonomnykh sistem \(s\) odnoi stepen' iu svobody vblizi rezonansa (Oscillations of quasilinear nonautonomous systems with one degree of freedom near resonance). PMM Vol. 23, No. 5, 1959.```

